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Abstract 

There is little known about the neural intricacies and ambiguities of human referential 

communication; cognitive neuroscience has yet to definitively account for the extreme flexibility 

with which we employ our words and gestures during everyday social interactions. The fMRI 

study conducted by Stolk, et al. “Cerebral coherence between communicators marks the 

emergence of meaning” is one of the few recent projects attempting to explore this area of 

research, proposing that the right frontotemporal region of the brain is the site of pair-specific 

cerebral coherence representing the conceptualization dynamics of shared communicative 

history. Evidence from this study supports the theoretical hypotheses that claim mutual 

understanding and shared common ground develop through negotiated communication contexts, 

a process that is both highly adaptive in nature and partner-specific. In this study, we examine 

direct neural evidence for shared representations in communication, testing the notion that the 

production and comprehension of mutually understood signals are reliant on a shared cognitive 

space. Using electroencephalographic (EEG) data acquired simultaneously during live 

communicative interactions, we show that communicators’ neural representations align to one 

another over the course of the communicative exchange. This communicative alignment process 

is neurophysiologically supported by broadband high-frequency activity prefrontal cortex. 

Shared representational dynamics occurred at a rate slower than the occurrences of individual 

communicative behaviors and were better accounted for by the accumulation of shared 

knowledge than by sensorimotor properties of the communicative behaviors. These findings 

challenge current signal-centered accounts of human communication, highlighting a mechanistic 

process that does not appear to be bound to and triggered by sensorimotor stimuli. Though data 

from intracranial EEG and fMRI participants performing a similar dual task is still being 
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analyzed, this project serves as a significant stepping stone that will refine and hone the direction 

of future experimentation in human communication. 

Keywords: social interaction, hyperscanning, conceptual knowledge, common ground, high 

gamma band activity, representational similarity analysis 

Introduction 

In our day to day lives, we constantly share our thoughts and emotions with those around 

us, both verbally and non-verbally, and reasonably expect that our expressions will be met with 

appropriate and relevant responses. Relevance here refers specifically to an intimate 

understanding of a shared history and context as this serves as a foundation for most of our 

future communication. Even if we may not be aware, a majority of our interactions with others 

are context dependent, take for example, if I am gesturing to my friend Mary, I may be indicating 

that she should turn around or perhaps I am making a gesture used frequently in the TV show 

“Friends” that I know we both watch (Tomasello, 2010). Though the act of referencing context 

in dialogue is a frequent occurrence, there is some debate as to the mechanistic and neural 

processes responsible for our incredible ability to maintain contextual, rather than simply 

attentional, synchrony. This thesis aims to marry psycholinguistic theory and modern-day 

neurophysiology in order to develop a compelling and robust story about the ways in which we 

communicate. 

Discussion of Theoretical Background Literature 

Though we are far from understanding all the theoretical intricacies surrounding the 

process in which ideas, thoughts, and abstract elements of communication are translated into 

appropriate semantic content based on our current contexts, there exist myriad hypotheses 

suggesting how this process might occur.  
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Early prominent figures in the field have proposed that successful communication implies 

that semantic transfer of information is taking place in the form of a cipher message or conduit 

(Akmajian, Farmer, Bickmore, Demers, & Harnish, 2017). In the semantic transfer model of 

communication (that has previously been primarily applied to linguistic dialogue), phonetically 

encoded linguistic and/or gestural messages are sent between interlocutors and decoded through 

the application of rules which only the interlocutors are privy to. This theory of communication 

implies that there is an inherent bijection from the set of linguistic/gestural units to the set of 

semantic meanings; an intercepting communicator would only need access to this finite set of 

mappings in order to decode the semantic content flowing between the two original interlocutors. 

Though this model of communication is intuitive and simple to understand, it does not account 

for the immense flexibility and ambiguity of everyday communication (Akmajian et al., 2017; 

Susan E. Brennan, Galati, & Kuhlen, 2010). 

More recent theories in the field posit that the translation process between thought and 

semantic content occurs through a relatively automatic procedure of interactive alignment in 

which the coherence of a situational model develops and allows for shared understanding 

through semantic priming (Pickering & Garrod, 2004). The primary claim is that dialogue is 

fundamentally different from monologue, requiring that interlocutors be synchronized across an 

abstract notion of internal situational model. A process of routinization occurs when elements or 

expressions are fixed to a meaning and become routine or easily understandable in the 

conversation (Pickering & Garrod, 2006). Many examples of linguistic priming, especially 

syntactic and lexical, have been demonstrated by empirical linguistic studies. In one such 

example, Cleland and Pickering found that participants were more likely to use a complex noun 

phrase structure after recently encountering a similar structure than to use a simple noun phrase 
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structure (Cleland & Pickering, 2003). Additionally, arguments have been made to support the 

priming of non-verbal situational contexts. These arguments claim that there exist both automatic 

priming and adaptive strategic components that play a role in co-gestural communication 

(Wachsmuth, Ruiter, Jaecks, & Kopp, 2013). Criticisms of Garrod and Pickering’s account of 

automatic cognitive alignment argue that the mechanistic procedure that they define does not 

necessarily address how the process of rapidly updating the situational context takes place nor 

does it acknowledge the pair-specificity of day-to-day dialogue (Susan E. Brennan & Metzing, 

2004).  

A third set of theories postulates the existence of conceptual pacts. Language processing 

in this framework exists as a joint collaboration in which two or more interlocutors “share or 

synchronize aspects of their private mental states and act together in the world” (S. E. Brennan & 

Clark, 1996; Susan E. Brennan et al., 2010; Herbert H. Clark, 1996). A conceptual pact in this 

context refers to the deliberately agreed upon relationship between a communicative signal and 

semantic content. This theory advocates for an alignment process of grounding, a separate 

process from that of priming. Grounding exists as the mechanism to interactively link 

communicative signals, that on their own have no “contained” meaning, to a mutually 

understood semantic concept. Grounding occurs through partner-specific negotiations that can be 

both implicit and explicit and serves to expand the space of successfully linked signals. It is also 

used to simplify and delineate the links that already exist (Susan E. Brennan et al., 2010; H. H. 

Clark & Wilkes-Gibbs, 1986). Behavioral evidence for the grounding model of communication 

include studies that observe acknowledgment as finite positive feedback (Clark & Brennan 

1992); elements of acknowledgement, like the paralinguistic utterance ‘uh huh’ or ‘m’ 

(Schegloff, 1982), are used as negotiation tools in the process of grounding. Additional evidence 
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for the grounding model in linguistic systems is provided by a study in which interlocutors copy 

their partners’ over-informative distinctive descriptions of semantic elements in a matching card 

game (Clark & Brennan, 1996). 

Discussion of Background Neuroscience Work 

Despite the breadth of theories proposed to explain context-dependent communication in 

humans, there have been few studies that examine the procedural relation between the theoretical 

bases for successful communication and corresponding patterns in neural activity. It is evident, 

even to those developing behavioral models of communication, that considering 

neurophysiological data in conjunction with behavioral data will allow for stronger and more 

holistic hypotheses to be tested (Brennan et al. 2010). A handful of fMRI experiments have 

attempted to shed light on this area of study by establishing and testing links between 

psycholinguistic theories of communication and the corresponding expected neurophysiological 

behavior.  Noordzij et al. found evidence of overlapping fMRI brain activity in (non-verbally) 

communicating pairs (right posterior superior temporal sulcus); overlap was sensitive not to 

sensorimotor difficulty but rather to the inherent communicative difficulty (ambiguity) of the 

task itself. This study supports the conclusion that there is a localized brain region responsible 

for communicative planning, though it does not rule out the potential engagement of other brain 

regions. Perhaps more importantly, this fMRI study demonstrates that shared activity of 

communicating pairs does not adhere to the “mirror neuron” hypothesis of communication since 

activity is regulated by the complexity of the communicative task rather than simply the act of 

communicating (Noordzij et al., 2009). Stolk et al. found that the cerebral activity produced 

through the accumulation of shared contextual knowledge in non-verbal communication 

synchronizes across pairs of participants at a temporal scale that is not time locked to the 
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presentation of stimuli. This dual-fMRI study provides convincing evidence supporting the 

argument that alignment (defined through the interactive alignment model) is taking place. 

Further, the process by which alignment happens in the brain more closely resembles what one 

would expect to observe in the case of the conceptual pact model (Stolk et al., 2014). 

EEG and Representational Similarity Analysis 

This experiment was conducted using EEG, a brain imaging modality that measures 

electrical activity originating from ionic currents in the cortex. Since EEG has a high temporal 

resolution on the order of milliseconds, this modality affords trial singularity and sensitivity. In 

contrast to fMRI and other techniques that measure the brain’s hemodynamic response, EEG 

signal is able to capture the idiosyncratic spectral fingerprints of neural phenomena. Ultimately, 

EEG provides experimenters with unique insights into the neurophysiological mechanisms 

underlying complex action or thought.   

In the last decade, a rash of multivariate analysis techniques have been applied to fMRI, 

MEG, and EEG data with significant success (Chadwick et al., 2016; Cichy, Pantazis, & Oliva, 

2014; James V. Haxby, 2012; James V. Haxby et al., 2011; Kaneshiro, Perreau Guimaraes, Kim, 

Norcia, & Suppes, 2015; Proklova, Kaiser, & Peelen, 2018; Salmela, Salo, Salmi, & Alho, 

2018). At the forefront of this movement into multivariate analyses is representational similarity 

analysis (RSA), pioneered most recently by Haxby and Kriegeskorte (J. V. Haxby et al., 2001; 

Kriegeskorte, Mur, & Bandettini, 2008). Representational similarity analysis, at a fundamental 

level, is simply the comparison of representational dissimilarity matrices (RDMs). An RDM is a 

square symmetric matrix in which each element represents the dissimilarity between two 

stimulus responses; the diagonal of an RDM is all zero as each of the diagonal entries represent 

the dissimilarity of response between a stimulus and itself. Though dissimilarity measures can be 
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computed in multiple ways, this study defines the notion of dissimilarity to be correlation 

distance. Equivalently, representational analysis can compare representational similarity matrices 

(RSMs); an RSM with corresponding RDM, X, can be calculated as 1 − 𝑋. RSA is an appealing 

method of analysis since it is able to abstract away from the brain imaging modality and 

anatomy, instead capturing the similarities between underlying brain activity patterns 

corresponding to experimental stimuli (Kriegeskorte et al., 2008). It is also a technique that is 

well-designed to relate behavioral and conceptual explanatory models to neurophysiological 

data, testing the correlations between latent neural representation of stimuli rather than vectors of 

inconsistent spectral data.  

RSA, under the larger umbrella of multivariate decoding models, is particularly well-

suited to our paradigm as it allows for the exploration of an abstract neural space that is no 

longer reliant on source-specific features of communication (Konvalinka & Roepstorff, 2012). 

Through the comparison and analysis of neural RSMs, we were able to investigate the nature of 

the shared neural structures that indirectly reflect communicative context and cognitive space. It 

is important to note that any mention of neural representation or representational space in the 

following sections refers to the manipulation of or interaction between neural RSMs, and does 

not necessarily apply to broader definitions of the term ‘representation’.  

The use of spatially and spectrally resolved RSA allowed us to further speculate about the 

locations and frequencies at which the development of shared communicative context could be 

taking place. One important technical term to define, related to these ideas, includes high gamma 

band (HGB) activity. HGB activity corresponds to the neuronal activity that occurs in the range 

of 60 to 140 Hz, though this range is subject to some debate. HGB activity is most commonly 

observed in intracranial recordings of electrical activity and has been shown to reflect local 
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neural spiking activity in the cortex (Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012; 

Manning, Jacobs, Fried, & Kahana, 2009). However, recent works have also shown that Ca2+  

dependent dendritic spikes in supragranular cortical layers contribute to HGB activity as well 

(Leszczynski et al., 2019). 

HGB activity has only recently been observed in scalp-EEG studies and there is some 

evidence to support HGB frequencies also playing a functional role in perception and cognition 

(Castelhano et al., 2017; Darvas et al., 2010). However, significant studies have cautioned 

against the assumption that induced gamma band response (iGBR) recorded through EEG is 

reflecting neural oscillation or representation, rather it may be reflecting saccadic or muscle 

activity (Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008). Though our study does not 

explicitly study the effects of stimulus-locked gamma band activity, it is a crucial reminder to 

carefully control for spurious activity that may be contaminating the recorded data. 

Context and Goals of this Study 

This thesis aims to address the following questions: 

● Is EEG, as a neuroimaging modality, able to produce substantial evidence to support the 

notion of shared representation reflecting communicative context? In other words, is the 

alignment of spectral dynamics more significant between communicating pairs than 

between pairs that were not communicating? 

● How can we effectively characterize the neurophysiological underpinnings of 

communication, that is, what features do the representations mentioned above consist of 

and how resolving are these features? 

● Once the previous two questions have been sufficiently addressed, can we determine 

which theoretical framework best explains how the emergence of a pair-specific shared 
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communicative history manifests in the brain? Does the neurophysiological data support 

an account of communication that is defined by sensorimotor associations or does it 

support an account of communication that highlights the dynamics of conceptual 

agreements? 

The Stolk et al. study provides neural evidence for a shared production of context-

dependent meaning through interactive grounding processes. What this study fails to explore, 

however, is the diversity of modality that may be able to capture this phenomenon and the 

underlying representational structures (RSMs) that define the neural correlates of mutual 

understanding. The purpose of this thesis is to shed light on the structure of communication and 

shared context at a neurophysiological level. Furthermore, it will contribute to our understanding 

of the imaging capabilities of EEG especially in the high frequency bands through the use of 

representational similarity analysis. 

Materials and Methods 

Participants     

Participants were 42 undergraduates and graduate students (M =  22.4 years; range = 18 - 

38  years; SD = 4.5; 22 female) recruited from the University of California, Berkeley, 

participating in exchange for class credit. No participant reported a history of psychological or 

neurological disorders. Study procedures were in ethical accord with the University of California 

guidelines and all participants involved in the study gave written informed consent. 
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Figure 1: (A) Depicts experimental setup; the computer screen is not shown here but is located in front of 

both subjects (front corresponding to the direction in which they are looking). The green rectangle 

indicates where a curtain was placed during the experiment to keep subject pairs from communicating 

verbally or gesturally. (B) Shows the discrete segments of a communicative interaction task (figure 

modified from Stolk et al. 2014). Segment number is located between the two blue and orange arrows.  

 

Materials and Experimental Design 

During the task, experimenters recorded EEG signals continuously from both participants 

with 64 Ag–AgCl pin-type electrode EEG caps (BioSemiTM). Eye movements and blinks were 

recorded with bipolar vertical and horizontal electrooculography (EOG) through two pairs of 

electrodes located at external canthi and the infraorbital and supraorbital regions of the right eye. 

EEG and EOG signals were digitally amplified with the BioSemi Active II system and sampled 

at 1024 Hz. The pair of participants sat in the same room with a curtain dividing the room in two 

halves (Fig. 1A). Each participant sat approximately a meter from a screen displaying the 

communication task. Participants were instructed to abstain from any verbal or visual 

communication apart from the interactions with the computer screen and controls. 
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Chronology of an Interaction Event and Details of Communication Task  

Since one of the primary goals of this study was to examine the extent to which differing 

neuroimaging modalities can capture previously established neural results, the experimental 

design of the tasks used very closely resembled that of the Stolk et al. paper (Stolk et al., 2014). 

Here, we recap the details of the task and highlight the sections in which this experiment differs 

from the previous designs. 

Similar to the Stolk et al. work, the task was organized into 80 distinct trials, each 

consisting of one main communicative interaction. For each pair one subject was labeled the 

Communicator and the other the Addressee. These roles did not alternate between trials (Fig. 

1B). At the beginning of each interaction, both players were assigned a token each that only they 

were able to manipulate during their designated turn in a trial. The Communicator would be 

assigned a blue token and the Addressee an orange token. Following the assignment of the 

tokens, the Communicator only was shown a goal configuration in which both tokens (blue and 

orange) were located at some arbitrary position on the grid and, depending on shape, were facing 

some distinct direction (segment 1 in Fig. 1B). The ultimate objective of the interaction was for 

the Communicator to successfully communicate this goal configuration to the Addressee such 

that at the end of the trial, both tokens (orange and blue) were at locations and orientations 

identical to that of the goal configuration shown to the Communicator at the onset of the trial. 

Since the Communicator could only manipulate the blue token, the Communicator must have 

communicated the Addressee’s final token configuration (orange) using only his/her own token 

(blue).  

The Communicator had an unlimited period of time to plan his/her future movement 

while being shown the goal configuration. The Communicator indicated the end of his/her 
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‘planning period’ by pressing the start button (segment 1). On both screens, the Communicator’s 

token appeared at the center of the screen (the orange token disappears) and he/she could 

manipulate the blue token in this ‘communication period’ by moving it horizontally, vertically, 

or rotating it in increments of 90 degrees (segment 2). This ‘communication period’ would end 

after 5 s but could have ended earlier if the Communicator pressed the start button again. 

Following the Communicator ‘communication period’, the orange token appeared at a random 

location on the grid that signals the Addressee that he/she now must infer, based on the 

Communicators’ movements, where to move the orange token. The Addressee would press the 

start button to indicate that he/she was ready to begin manipulating the orange token and 

effectively end the Addressee ‘planning period’ (segment 3, not shown explicitly in the 

diagram). The Addressee had, at most, 5 s to move and rotate the orange token to the position 

that he/she believed was the final goal configuration (segment 4). Once 5 s had elapsed or if the 

Addressee pressed the start button again, a feedback screen was presented to both players 

signifying to the pair whether the final configuration of the tokens at the end of the trial matched 

that of the goal configuration (green check if correct, red cross if not).  

Of the 80 trials, 40 presented goal configurations that had not been seen previously in the 

task (novel) and 40 presented goal configurations that the participant pair had encountered 

during a training session before the experiment (known); novel and known trials were pseudo-

randomly interspersed throughout the task with the difficulty of novel trials increasing as the task 

progressed. We ordered the tasks in this way to enable the tracking of mutual understanding over 

the course of the experiment. See Fig. 4A for the behavioral dynamics of mutual understanding 

in the sample population indexed by communicative success. 
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Strategy Classification 

Communicators used a set of common communicative strategies to relay the goal 

configuration details to his/her partner. A set of strategies and corresponding descriptions that 

had been produced in a previous study with an identical communicative paradigm was modified 

to include all novel strategies encountered in this study. A total of 25 unique signals were 

observed and categorized by researchers, see Table S1.  

Behavioral analysis 

Behavioral data were aggregated on a single subject pair automatically through the 

computer program operating during the experiment. Custom Matlab scripts were developed to 

analyze and visualize this data over the course of the experiment.  

Behavioral Metric and Description Table 

Behavioral Metric Name Description 

Communicator Plan Time Duration of segment 1 

Communicator Movement Time Duration of segment 2 

Communicator Number of Moves Number of moves recorded in segment 2 

Addressee Plan Time Duration of segment 3 

Addressee Movement Time Duration of segment 4 

Addressee Number of Moves Number of moves recorded in segment 4 

Success 

Whether the subject pair was able to 

successfully reach the goal configuration 

following segment 4 
 

Table 1: Relevant behavioral data consisted of the above metrics recorded on a trial-by-trial basis. 

Descriptions of the behavioral metrics refer to the segments labeled in Fig. 1B. 

 

EEG Data Cleaning and Preprocessing 

Once neural data had been collected from the 21 subject pairs, standard filtering and re-

referencing procedures were performed with the Fieldtrip toolbox in order to preserve data 
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hygiene (Oostenveld, Fries, & Jensen, 2009). Initial filtering procedures included band-stop 

filtering at the line-noise frequency and its harmonics (i.e. 60, 120, and 180 Hz) as well as band-

pass filtering between 1 and 200 Hz to remove high frequency noise and suppress slow wave 

fluctuations. A semi-automatic procedure was then designed to identify and eliminate all signal 

components caused by oculo-muscular activity; the screening procedure consisted of three main 

steps. First, data (unre-referenced and continuous) was decomposed into spatiotemporally 

independent signal components using Independent Component Analysis (Makeig, Bell, Jung, & 

Sejnowski, 1996; Ungureanu, Bigan, Strungaru, & Lazarescu, 2004). Second, components 

correlated to electrooculographic (EOG) activity (threshold = 0.5) were removed from the signal. 

Third, spectral content was estimated for each component and components with power spectral 

curves closer to that characteristic of muscle sources (diminished fall-off or even an increase of 

content in higher frequencies) rather than that of  neural sources (exponential fall-off of 

frequency content with increasing frequency) were removed from the signal (Yuval-Greenberg et 

al., 2008). On average, this screening procedure rejected 32.9 components from each 

Communicator and 33.0 components from each Addressee data (range = 17 - 42). After 

identifying and rejecting non-neural components, we manually screened the re-composed data 

using a data browser tool and excluded any remaining contaminated trials from further analysis 

(6 out of 80 trials on average; range = 0 - 14). 
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Figure 2: (A) Illustration of the process of transforming a series of power spectral densities associated 

with space and stimuli into an RSM through Pearson correlation along the trial dimension. (B) Once 

RSMs had been computed for each subject, pairwise correlations between Communicator (Production) 

and Addressee (Comprehension) subject RSMs were calculated iteratively. Time-lagged correlations were 

produced through a process of shifting one of the two trial vectors and performing Spearman’s Rank 

correlation on the resulting vectors. The lag dimension allowed experimenters to determine the effects of 

temporal change on average correlation. The final cubic product of a pairwise correlation preserved the 

spectral, spatial, and temporal dimensions of the communicative interaction. 
 

Representational Similarity Analysis 

RSA was used to explore the neural mechanisms of mutual understanding through the 

comparison of subject specific trial-to-trial resemblances. At a fundamental level, the purpose of 

this analysis was to determine whether subjects’ neural representations of communicative 

interaction were similar and if so, to what extent. After data cleaning procedures, single subject 
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RSMs were created through a custom Matlab pipeline (Fig. 2A). Single subject EEG data were 

segmented into 500 ms windows with 0.9 overlap. Frequency analysis was performed on the 

segmented data with a hanning taper to mitigate the effects of spectral leakage; the frequency of 

interest was specified to be in the range of 1 to 200 Hz with a step size of 2 Hz. Resulting power 

spectra, averaged over the time dimension, produced structures of the shape [trial x channel x 

frequency]. These three-dimensional structures were transformed into searchlight 

representational similarity matrices through the Pearson correlation method over the trial 

dimension (stimuli) as described by Kriegeskorte (Kriegeskorte et al., 2008). 

Neural RSM Correlations 

Single subject RSMs were compared to each other through a process of pairwise 

correlation. Spearman’s Rank correlation was performed on the lower triangular elements (or 

equivalently, upper) of the symmetrical RSMs excluding the diagonal (Fig. 2B), as including the 

diagonal has been shown to result in illusory correlation effects (Ritchie et al. 2016). Distinctions 

between real pair correlations and cross pair (all sets consisting of one Communicator and one 

Addressee that did not participate in the experiment together; a total of 420 cross pair 

correlations were calculated) correlations can be found in results below. 

Neural Off-Diagonal RSM Correlations 

To further explore the nature of pair-specific neural RSM overlap, we correlated the off-

diagonal vectors (the sequence of diagonal elements immediately below, or equivalently above, 

the main diagonal) of each neural RSM instead of correlating the entire RSM. The off-diagonal 

vector represents the correlation values between the brain activity patterns recorded from 

adjacent trials only. In a process identical to that of the neural RSM correlations, Spearman’s 

Rank correlation was performed on the off-diagonal vectors of every subject pair combination. 
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Figure 3: Once neural RSMs had been computed for each subject, they were transformed into RDMs 

through subtraction. Pairwise correlations between neural subject RSMs and behavioral model RDMs 

were calculated iteratively. The final product of a pairwise correlation preserved the spectral and spatial 

dimensions of the communicative interaction. 

 

Neural RSM to Behavioral Correlations 

In order to investigate the content of neural representations rather than simply the 

alignment between communicating pairs, we compared neural RSMs to behavioral based 

dissimilarity structures. The purpose of this analysis was to determine the extent to which 

behavioral models could explain or account for the neural representations of a particular brain 

region (Kriegeskorte et al., 2008). Single subject RSMs were transformed into RDMs and 

compared to behavioral-based dissimilarity structures through an additional process of pairwise 

correlations. Behavioral-based dissimilarity structures were produced through the aggregation of 

behavioral data and subsequent behavior-type dependent manipulation over the trial dimension.  

Behavioral-based dissimilarity structures consisted of a pair-specific number of moves-

based model, an accumulation of strategy-based model, and a control time-based model. The 
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number of moves-based model matrix was computed as follows; a cell contained the absolute 

difference between the number of moves made by the Communicator in each trial. This coarse 

behavioral model was constructed to resemble the neural representational geometries provided 

that sensorimotor associations governed neural activity. The accumulation of strategy (cf. the 

notion of negotiated conceptual pacts) based model matrix was computed as follows; first a 

correspondence was made between trial number and the accumulation of strategy measure. 

Accumulation of strategy represents the number of strategies (categorized in Fig. S1) that have 

been used successfully up till the current trial. A cell in the accumulation of strategy based model 

matrix contained the absolute difference between the accumulation of strategy measure of each 

trial. This behavioral model was constructed to imitate the behavioral representational 

geometries that may develop over the course of a communicative task, expanding with each new 

negotiated and agreed upon strategy (Diedrichsen & Kriegeskorte, 2017; Kriegeskorte & Kievit, 

2013). The time-based model matrix was computed as follows; a cell contained the absolute 

difference between the trial order numbers. For example, the cell corresponding to trial five and 

trial eight would contain the number three. 

Statistical Inference at the Group Level 

Group statistics were performed over the entirety of each type of correlation data to 

provide descriptive and inferential information; specifically, determining the statistical 

significance of single subject correlations. Since we were primarily interested in the effects 

induced by novel trials in comparison to known trials and real pairs in comparison to cross pairs, 

statistical inferences shown in the topo-plots reported below have been produced by computing 

the results of independent sample t-tests over either of these two sets. We performed cluster 
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statistics on the resulting t-values with a cluster alpha of 0.05, in order to determine the locations 

and frequencies of significant positive and negative clusters (Maris & Oostenveld, 2007). 

Results 

 

Behavioral Evidence for Shared Knowledge Updating  

To gain insight into the shared dynamics of mutual understanding, we first examined 

behavioral results collected over the course of the experiment. Both the theoretical and 

experimental analysis of behavioral data, as a precursor to the analysis of neurophysiological 

data, are considered to be integral to the investigation of lower level neural mechanisms, 

correcting for the common “reductionist” bias described by Krakauer et al. (Krakauer, 

Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017).   

Behavioral results were analyzed for Communicator and Addressee planning times as 

well as trial success; these metrics were selected for analysis since they embody some of the 

most critical features of human communication: duration of communication-related preparation 

time and whether or not a communicative interaction is successful. Descriptions of these results 

are categorized into classes of evidence either relating to the pair-specificity of communication 

or the comparison of known and novel trial dynamics. 
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Figure 4: (A) Percentage of successful trials over all subject pairs at each trial.  Error clouds indicate the 

standard error of the mean (SEM) for each trial. (B) Correlation of plan time values between real and 

cross pairs as well as between known and novel trials. Error bars indicate the SEM for each correlation 

grouping. (C) Percentage of successful trials at binned trial times averaged over all subject pairs. Error 

bars indicate the SEM for each set of binned trials. (D) Percentage of successful trials corresponding to 

increasing binned sender plan times averaged over all subject pairs. 

 

Pair Specific Alignment 

Correlating Communicator Planning Time with Addressee Planning Time  

The results of correlating Communicator planning time with Addressee planning time 

(Fig. 4B) reveal that pairs of real communicators exhibit a high degree of planning time 

correlation in novel trials (M = 0.2147, SD = 0.2050). Every other combination of planning time 

correlation exhibits roughly the same positive average, real communicators in known trials (M = 

0.06301, SD = 0.1521), cross communicators in known trials (M = 0.07495, SD = 0.1880), and 

cross communicators in novel trials (M = 0.05876, SD = 0.1813). Analysis of variance statistic 

(ANOVA) models support these claims (JASP 2018). ANOVA for Novelty (known or novel 
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trial) X Group (real or cross pair) revealed a significant effect for Group [F(1, 878) = 6.093, P = 

0.014], Novelty [F(1, 878) = 5.395, P = 0.020], and a significant interaction between Novelty * 

Group [F(1, 878) = 8.281, P = 0.004]. These observations suggest that both members of real 

communicating pairs found novel trials similarly challenging.  

Alignment Dynamics 

Visualizing Success over Trials 

We examined the average success rate of each trial in chronological order over all 

subjects (Fig. 4A). In order to demonstrate the general trend effect of time on the percentage of 

average success, we additionally plotted the average success rate over binned trials (each mark 

on the x-axis represents the average of approximately six trials, Fig. 4C). In both plots, the 

average success of known trials stays relatively constant while the average success of novel trials 

increases as the experiment progresses. Taken together these plots suggest that the exposure to 

each new novel trial allows subject pairs to develop strategies and contexts that will contribute to 

success in later novel trials.     

Visualizing Success over Planning Time 

We examined the average success rate of each set of trials binned over increasing 

Communicator planning time. This plot illustrates the trend relating duration of Communicator 

planning time to percentage of average success (Fig. 4D). In both cases of known and novel 

trials, average success decreased as Communicator planning time increased, indicating a strong 

relationship between the difficulty of a trial and the effort or time put into communicating the 

goal configuration. 
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Neural Evidence for Shared Knowledge Updating 

 To better comprehend the neurophysiological framework that allows for successful 

communication, we examined the recorded EEG data through a series of RSA analyses. RSA, as 

described by Kriegeskorte, was first used to determine pair-specific overlap in the neural 

representation of the communicative exchange (Kriegeskorte et al., 2008). Expanding upon the 

traditional whole-matrix approach to RSA analyses, we also correlated off-diagonal vectors that 

had been extracted from subject-specific neural RSMs. Next, we constructed behavioral model 

RDMs and compared these models to the neural RSMs in order to explore the content of neural 

activity and its relation to behavior. 

We categorized neural results into classes of evidence either relating to the pair-

specificity of communication or the comparison of trial-type dynamics. 
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Pair Specific Representational Alignment 

 
Figure 5: (A) Averaged Spearman correlations of RSMs over the entire scalp and all subject pairs, 

separated into real and cross pairs, produced from the EEG power-spectra once all non-neural 

contaminant components had been removed. (B) Corresponding topographic map of t-values produced by 

a two sample t-test between real pair RSM correlations and cross pair RSM correlations (in that direction) 

averaged over the frequency range 30 to 100 Hz. (C) Lag t-values across all frequency bins averaged over 

frontal electrodes, Fp1, AF3, Fpz, Fp2, AF4, AFz. Same scaling legend as the topographic maps. (D) 

Averaged Spearman correlation of RSMs over the entire scalp and all subject pairs, separated into real 
and cross pairs, produced from the EEG power-spectra with contaminant and neural components 

included. (E) Corresponding topographic map of t-values produced by a two sample t-test, as described 

above. (F) Corresponding lag t-values across all frequency bins averaged over frontal electrodes. Same 

scaling legend as the topographic maps. (G) Averaged Spearman correlations of RSMs over the entire 

scalp and all subject pairs, separated into real and cross pairs, produced from the EEG power-spectra with 

only the contaminant components included. (H) Corresponding topographic map of t-values produced by 

a two sample t-test, as described above. Shaded regions around all line plots indicate SEM. (I) 

Corresponding lag t-values across all frequency bins averaged over frontal electrodes. Same scaling 
legend as the topographic maps. 
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RSA Correlations: Between Neural and Neural 

Subject-specific RSMs produced from uncontaminated EEG power-spectra were 

correlated across real and cross pairs. Plotting average correlation values across subject pairs 

clearly illustrates that across all frequency bins, real pairs (M = 0.0583, SD = 0.0027) exhibit 

higher correlations than cross pairs (M = 0.0390, SD = 0.0019) (Fig. 5A). The positive 

correlations between cross pairs is compatible with behavioral results, likely tapping into the pair 

agnostic shared dynamics of the task. 

Control Analysis for Oculo Muscular Activity 

Subject-specific RSMs produced from all EEG components (including contaminated 

components) were correlated across real and cross pairs. There exists no distinct difference 

between average correlation values in real pairs (M = 0.0193, SD = 0.0016) and cross pairs (M = 

0.0194, SD =0.0009) across all frequency bins (Fig. 5C). 

Subject-specific RSMs produced from discarded EEG components were correlated across 

communicating and cross pairs. There exists no distinct difference between average correlation 

values in real pairs (M = 0.0193, SD = 0.0023) and cross pairs (M = 0.0191, SD =0.0011) across 

all frequency bins (Fig. 5E). 

 
Figure 6: (A) Averaged Spearman correlations of off-diagonal vectors over the entire scalp and all 

subject pairs, separated into real and cross pairs as well as into Known or Novel trial-types. (B) 

Corresponding topographic map of t-values produced by a two sample t-test between novel trial-type real 
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pair and cross pair correlations as well as real pair novel trial-type and known trial-type correlations (in 

that direction) averaged over the frequency range 30 to 100 Hz.  

 

RSA Off-Diagonal Correlations: Between Neural to Neural 

 The off-diagonal vector from subject-specific RSMs (the elements immediately below the 

main diagonal of the RSM) produced from uncontaminated EEG power-spectra were correlated 

across communicating and cross pairs as well as known and novel trials. Plotting average 

correlation values across each subject pair illustrates that that across all frequency bins, real pairs 

participating in novel trials (M = 0.0518, SD = 0.0045) exhibit higher correlations than real pairs 

in known trials (M = 0.0294, SD = 0.0049), cross pairs in novel trials (M = 0.0210, SD = 

0.0030), and cross pairs in known trials (M = 0.0101, SD = 0.0048) (Fig. 6A).  
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Representational Alignment Dynamics and Content 

 
Figure 7: (A) Averaged Spearman correlation of neural RSMs to pair-specific behavioral number of 

moves matrix over the entire scalp, separated into both corresponding behavioral (real) and non-

corresponding behavioral pairs (cross) as well as Communicators and Addressees. (B) Corresponding 

topographic maps of t-values produced by a one sample t-test over real pair correlations. (C) Averaged 

Spearman correlation of neural RSMs to pair-specific behavioral accumulation of strategy matrix over 

the entire scalp, separated into corresponding behavioral and non-corresponding behavioral pairs as well 

as Communicators and Addressees. (D) Corresponding topographic maps of t-values produced by a one 

sample t-test over real pair correlations. (E) Averaged Spearman correlation of neural RSMs to pair 
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agnostic conceptual time matrix over the entire scalp, separated into Communicator and Addressee 

correlations. (F) Corresponding topographic maps of t-values produced by a one sample t-test over real 

pair correlations. 

 

RSA Correlations: Between Neural and Behavior 

Averaged Spearman correlations between neural RSMs and the pair-specific number of 

moves based model matrices indicate the overlapping relationship between sensorimotor features 

of behavior and neural representations in Communicators (M = -0.0190, -0.007 SD = 0.0011, 

0.0002 ) and in Addressees (M = -0.0083, -0.0043 SD =0.0007, 0.0002). Independent one sample 

t-tests performed on the correlations between all neural RSMs and corresponding behavioral 

matrices produced 0 significant positive clusters and 0 significant negative clusters.  

Averaged Spearman correlations between neural RSMs and the accumulation of strategy 

based model matrix indicate the overlapping relationship between Addressees (M = 0.0588, 

0.0618 SD = 0.0018, 0.0005) and Communicators (M = 0.0568, 0.0519 SD = 0.0063, 0.0011). 

An independent one sample t-test performed on the correlations between Communicator neural 

RSMs and the corresponding behavioral matrices produced 1 significant positive cluster 

containing 1456 points and 0 significant negative clusters. The positive cluster spanned the entire 

frequency range with the peak spanning 40 to 100 Hz. An independent one sample t-test 

performed on the correlations between Addressee neural RSMs and the corresponding behavioral 

matrices produced 1 significant positive cluster containing 1213 points and 0 significant negative 

clusters. The positive cluster spanned the entire frequency range with the peak spanning 40 to 80 

Hz.  

Averaged Spearman correlations between neural RSMs and the time based model 

matrices indicate the overlapping relationship between Addressees (M = 0.1381 SD = 0.0032) 

and Communicators (M = 0.1225 SD = 0.0039). An independent one sample t-test performed on 

the correlations between Communicator neural RSMs and the corresponding behavioral matrices 
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produced 1 significant positive cluster with 6286 points and 0 significant negative clusters. The 

positive cluster spanned the entire frequency range. Addressee neural RSMs and the 

corresponding behavioral matrices produced 1 significant positive cluster, containing 6304 

points and 0 significant negative clusters. The positive cluster spanned the entire frequency 

range. It is important to note that since the time based model matrix is inherently not pair 

specific, it is not possible to correlate a subject’s neural RSM to a pair-specific behavioral RSM. 

Discussion 

Current psycholinguistic accounts of communication outline three primary theoretical 

models: semantic transfer, automatic interactive alignment, and conceptual pact based (Susan E. 

Brennan et al., 2010; Pickering & Garrod, 2004). Several prominent studies from the field of 

cognitive neuroscience have attempted to make sense of these theories in the context of 

neurophysiological activity and space, determining that the degree of partner-specific alignment 

of Blood Oxygen Level Dependent (BOLD) signal is linked to the abstract experience of a trial 

rather than specific perceptual stimuli (Noordzij et al., 2009; Stolk et al., 2014, 2013). These 

seminal works support the conception of a shared communicative context that is modified by a 

series of abstract negotiations between communicating partners, a schema that most closely 

resembles the conceptual pact based model of communication. However, these studies have yet 

to provide direct neural evidence for the pair-specific representational overlap that would serve 

as the site of dynamic context. This study, exploring the nature of communication through a 

dual-EEG experimental paradigm, attempted to both address this salient issue and further 

strengthen the link between notions of communication in psycholinguistics and in neuroscience. 
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Behavioral evidence for shared knowledge updating 

Returning to the questions posed in the introduction, we first address whether there is 

sufficient behavioral evidence to support the existence of a shared communicative context. The 

consistent correlation between real pair planning times during novel trials far exceeds that of real 

pairs during known trials and that of cross pairs during both known and novel trials. This 

comparison indicates that there does exist a strong pair-specific pattern in planning time during 

novel trials and is consistent with previous related studies (Stolk et al., 2014). If we accept that 

behavior reflects the state of communicative context, this result also emphasizes the distinct 

character of each pair’s dynamic contexts when exposed to novel stimuli.  

As for the expansion of a shared context, an intuitive interpretation of the plot Fig. 4A, 

4C is that average success rate over novel trials steadily increases as subject pairs develop joint 

communicative history. This suggests that subject pairs become more skilled at completing novel 

trials successfully because they negotiate mutually understood strategies for communicating 

effectively. The high degree of variance across the success rate of novel trials suggests that every 

pair develops useful communicative contexts at a different rate. 

One could argue that the difficulty or ambiguity of the trial strongly affected both 

planning time alignment and trial success rate trends (Noordzij et al., 2009), since it is likely that 

novel trials were inherently more difficult than known trials; this would mean that it is difficulty 

rather than novelty that predicts an increase in pair-specific communicative alignment. However, 

the assertion that the inherent difficulty of a trial is a more influential modulator of planning time 

correlation and success rate trends than novelty alone does not necessarily disprove the existence 

of a shared cognitive space, rather it calls into question the delineation of trial properties and 

prompts us to further explore other dimensions of the trial data. 
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Neural evidence for shared knowledge updating 

Though we are still in the process of analyzing the neural data further for additional 

trends and patterns, preliminary evidence from the analyses performed thus far supports the 

existence of a dynamic, pair-specific communicative context. We use this space to address the 

questions posed at the beginning of the introduction and speculate about which theoretical 

interpretations are best able to explain our results.  

 We first address whether there is neural evidence to support the existence of a shared 

communicative context. It is widely assumed that high frequency range electrical activity (both  

gamma and HGB ranges) recorded through EEG is too weak to measure reliably and is heavily 

confounded by muscle activity. However, recent studies have shown that through thorough 

artifact identification and rejection procedures, neural high frequency activity can be extracted 

from EEG recordings and the result shown to be associated with cognitive function 

(Muthukumaraswamy, 2013; Onton & Makeig, 2009). Fig. 5A, 5B, 5C, 6A, 6B all show higher 

correlation between real pair RSMs than cross pair RSMs; focal positive clusters are localized to 

the medial prefrontal region of the brain at frequency range 30 to 100 Hz. Despite the poor 

spatial resolution of EEG recording, our findings are in line with previous studies that have 

shown the medial prefrontal cortex (mPFC) to be involved in social and predictive cognition 

(Alexander & Brown, 2011; Amodio & Frith, 2006). Ultimately, our results indicate that there is 

an overlap in subject-pair neural high frequency activity patterns that occurs independent of any 

single trial property; this striking effect persists across neighbouring trials (Fig. 5C). Importantly, 

from Fig. 5A, we observe that this difference is a sustained broadband effect. Given the results 

illustrated in Fig. 5D, 5E, 5F, 5G, 5H, and 5I, we also know that it is likely not a result of 

significant artifact contamination. These results suggest that the neural representations 
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corresponding to the entire communicative exchange are similarly encoded in communicating 

subject pairs, that is, to some extent real pairs share abstract patterns of neural activity that cross 

pairs do not; these results are neuroanatomically supported by brain activity in the medial 

prefrontal areas.  

 Next, we attempt to characterize the neurophysiological processes that underlie the 

expansion of shared contextual knowledge, describing the features of neural representation that 

prove most resolving. Fig. 6 illustrates the results of comparing neural RSM off-diagonal vectors 

to one another. Fig. 6A demonstrates two important findings: first, real pair off-diagonal vectors 

were more closely correlated to one another than cross pairs were; second, novel-type off-

diagonal vectors were more closely correlated to one another than known-type vectors were. 

Interestingly, trial-type sensitivity (Novel vs. Known) took precedence over pair-specificity 

(Real vs. Cross). In other words, in real pairs, the neural resemblances in adjacent novel trials 

were more similar to one another than adjacent known trials. To relate these findings to our 

theoretical framework, we may speculate that the strong correlations between real pair neural 

activity patterns indicate the existence of pair-specific alignment mechanisms. Stronger 

correlations between novel-type off-diagonal vectors suggest that novel trials require 

Communicators and Addressees to engage in more explicit negotiation. Subject pairs must 

ensure that their knowledge space takes into account the context of the current situation (cf. 

internal situational models) in order to communicate successfully; it is this dynamic and shared 

process of adjustment that likely allows communicators to produce and comprehend novel 

signals (Brennan et al. 2010; Pickering and Garrod 2004). 

From Fig. 7A, 7B, we can conclude that the sensorimotor trial property, number of 

moves, is not significantly or consistently correlated to neural RSMs in the high frequency 
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ranges. If we assume that the number of moves behavioral model resembles the neural activity 

patterns resulting from automatic interactive alignment, then these results challenge prominent 

brain-to-brain coupling theories (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers, 2012), 

complicating the model of communication that relies on simple motor priming and mirror 

neurons (Pickering & Garrod, 2004). It is important to note that we have performed identical 

analysis on other sensorimotor trial properties (i.e. Communicator movement time) which all 

resulted in similar outcomes. From Fig. 7C, 7D , we observe that the accumulation of strategy 

based model matrix is more closely correlated to the neural RSMs than the number of moves 

based model matrix, the correlation is most pronounced in the frontal region of the brain at 30 to 

100 Hz. From Fig 7E, 7F, we can definitively conclude that the time based model matrix is most 

closely correlated to the neural RSMs in comparison to the two other behavioral models that we 

tested; the correlation is pronounced throughout the whole scalp at frequency ranges 30 to 100 

Hz. These results reveal an obvious property about our dynamic neural representations: the 

similarity between two single trial neural representations is almost directly proportional to the 

distance between the corresponding trials in time. Perhaps, the passage of time corresponds to 

the evolution and expansion of a shared knowledge space; this would mean that the discrete 

accumulation of knowledge occurs at a rate similar to that of the trial length. However, this 

interpretation may be reading a complicated problem too simplistically, and undoubtedly calls 

for further evidence and analysis. 

 How can we fairly interpret this large set of complex neural data through the lens of 

communication? It is evident from the correlations between neural RSMs that there are neural 

activity patterns shared between real communicating partners. It does not necessarily follow, 

from this alone, that these patterns constitute the shared, dynamic cognitive space responsible for 
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successful communication. In a study as intricate and unique as this one, it is crucial to consider 

alternate explanations for the results presented. One important piece of the puzzle that we have 

neglected to address is the role of working memory in our experimental paradigm. Working 

memory, a cognitive system responsible for holding and manipulating information, may 

contribute to shared neural activity patterns assuming that working memory demands for each 

trial were roughly equal for both Communicator and Addressee. This interpretation of our results 

may lead us to believe that subjects pairs do not interactively negotiate communicative strategies, 

but rather the Communicator chooses a single strategy and, over the course of 80 trials, learns 

how to execute it successfully. However, it has been shown that Communicators take into 

account the nature of Addressee misunderstanding; Communicators will emphasize or clarify 

features in a communicative strategy that the Addressee did not understand in previous trials 

(Blokpoel et al., 2012). This study strongly suggests that there is a negotiation or deliberate 

interaction taking place, the Addressee is not an entirely passive member of the communicative 

pair. Another explanation for our results may involve levels of engagement or shared attentional 

mechanisms driving high correlation values (Dikker et al., 2017). Though it is possible that 

attention plays a role in correlation, we see from Fig. 5A that our results indicate a sustained 

effect, one that likely cannot be explained through attentional effects alone. Possible analyses 

that may clarify some of these confounding issues include exploring the effect of task difficulty 

on neural activity pattern overlap as well as examining the weight or contribution of each trial to 

overall neural activity pattern overlap.  

Taken in aggregate, these neural results provide preliminary evidence to support the 

notion of a shared representation space that adjusts in response to novel or difficult experiences; 

the semantic transfer and automatic interactive alignment models of communication cannot 
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account for these results. Though our findings can best be explained by the conceptual pact based 

model of communication, it is clear that these questions are difficult to answer definitively and 

almost certainly demand further exploration.  

Limitations 

Scalp-EEG data is widely accepted to be a relatively poor indicator of spatially focal 

effects. For this reason, a significant limitation of almost all EEG studies is the spatial resolution 

of specific sources of activity. There are several techniques to improve EEG spatial resolution; 

some notable examples include using the Surface Laplacian technique, which reduces volume 

conduction effects thereby improving spatio-temporal resolution (Burle et al., 2015; Carvalhaes 

& de Barros, 2015), and using dipole source localization, in which measured electrical potential 

patterns are used to reverse engineer the activity values of an embedded source (He, Yang, 

Wilke, & Yuan, 2011). Future analysis of this dataset will likely employ these techniques to 

focus in on specific regions of interest.  

Another significant limitation of our study involves the structure of the task paradigm. 

Other studies that have conducted similar experiments chose a format of the task such that the 

role of Communicator and Addressee alternate by trial (Stolk et al., 2014, 2013). This modified 

task format allowed the experimenters to examine the evolution of strategies employed by both 

members of a subject pair rather than just one. New analyses could easily be fashioned to 

incorporate strategy alignment, a measure that indicates when the communicating pairs (both 

subjects) have employed the same strategy in consecutive trials; this measure would likely 

provide unique insights into the mechanistic process of negotiating communicative strategies 

(Wadge, Brewer, Bird, Toni, & Stolk, 2018). 
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Interpretational limitations of this study involving the assumptions imposed onto both 

behavioral and neurophysiological results have largely been addressed in previous sections.  

Conclusion 

Building upon the framework provided by previous communication studies (Noordzij et 

al., 2009; Stolk et al., 2014, 2013), the results of this work support the hypothesis that 

communicative contexts, or the fragments of information we draw on when participating in 

interpersonal social interaction, are represented in the brain to be both pair-specific and 

synchronized to abstract notions of task nature rather than simple sensorimotor stimuli. This 

work uses RSA in high frequency band ranges to make preliminary conclusions about the nature 

of communication; clarifying which theoretical models are unlikely to adequately explain the 

observed neurophysiological representations. Future experimentation and analyses of the neural 

correlates of communication will ideally outline a procedural mechanism that takes into account 

both theoretical scaffolding and neurophysiological evidence, painting a holistic and 

interdisciplinary picture of what it means to communicate. 
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Supplementary Methods 

 
Figure S1: (A) Topographic map of t-values produced by an independent samples t-test between the 

neural power correlations of real pairs and cross pairs. No significant clusters were reported in any 

frequency bins tested, 1 to 200 Hz (p > 0.05). (B) Topographic map of t-values produced by an 

independent samples t-test between the neural power correlations of novel and known trials. One 

significant positive cluster was reported, with 13210 points in the high frequency bins, 30 to 100 Hz. The 

above maps exclude low frequency t-values, showing the average t-values in the range of 30 to 100 Hz. 

 

Neural Power Correlations 

As a final step to validate the use of RSA as a means to distinguish features of brain 

activity in communicating and cross pairs as well as in novel and known trials, we examined the 

power correlations between Communicators and Addressees. Neural state correlation analysis 

was performed using cross-correlation of subject-specific time series of cerebral activity 

estimated independently for each task state. The t-values produced as a result of running a 

spatially resolved independent samples t-test on the result of the power correlation values yielded 

the above figure (Fig. S1). No statistically significant clusters were reported in Fig. S1 A, one 

significant positive cluster was reposted in Fig. S1 B (Oostenveld et al., 2009). 
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Figure S2: Process and results of running the searchlight hyperalignment algorithm through repeated 

Procrustean transformation on expanding sets of neural data. 

 

Hyperalignment Methods and Results     

In an effort to further explain representational similarity space, we implemented the 

searchlight hyperalignment algorithm detailed in the study conducted by Guntupalli et al. 

(Guntupalli et al., 2016; James V. Haxby et al., 2011). This algorithm mainly consisted of using 

the Procrustean transformation algorithm to derive a common model space that could then be 

used to compare single subject model spaces. However, this analysis relies on attentional driven 
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dynamics; since there were few attentional driven dynamics in the dual-EEG dataset, we noticed 

that channel specific temporal dynamics were washed out by the hyperalignment 

transformations. This washing-out phenomenon occurred even in the cases in which we 

interpolated missing trial data and performed hyperalignment transformations on neural 

representations rather than the neural spectral data.  

Supplementary Tables 

Strategy Classification Discussion and Table 

Communicative Signal Description 

A - pause 
The Communicator spends more time at the Addressee’s target 

location than at any other visited location on the game board. 

 

B - prolonged pause 

The Communicator pauses on the Addressee’s target location for 

periods of time proportionate to the number of rotations the Addressee 

needs to make. 

 

C - match 

The Communicator matches the Addressee’s target orientation by 

rotating in place at the Addressee’s target location (the players’ shapes 

are identical). 

 

D - rotate 

The Communicator goes to the Addressee’s target location and rotates 

in place however many times required for the Addressee to reach the 

target orientation. 

 

E - entry 
The Communicator enters the Addressee’s target location from the 

direction the Addressee’s shape should be pointing. 

 

F - exit 
The Communicator exits the Addressee’s target location along the 

direction the Addressee’s shape should be pointing. 

G - line 

The Communicator steps out multiple steps from the Addressee’s 

target location to indicate the direction the Addressee’s shape should 

be pointing. 

 

H - single wiggle from target 
The Communicator steps out of the Addressee’s target location in the 

direction of the Addressee’s target orientation. 

 

I - multiple wiggles from 

target 

The Communicator steps in and out of the Addressee’s target location 

multiple times in the direction of the Addressee’s target orientation 

(more emphatic version of H). 
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J - wiggle count from target 

The Communicator goes to the Addressee’s target location and steps 

in and out of that location however many times the Addressee needs to 

rotate to reach the target orientation. 

 

K - wiggle count from target 

neighbor 

The Communicator goes to a square adjacent to the Addressee’s target 

location and steps into and out of the Addressee’s target location 

however many times the Addressee needs to rotate to reach the target 

orientation. This signal will result in one less visit to the target location 

than J. 

 

L - wiggle from center 

The Communicator visits the Addressee’s target location followed by 

the game board’s center, and steps in and out of the central location 

however many times the Addressee needs to rotate to reach the target 

orientation. 

 

M - exit from center 

The Communicator exits the central start location along the direction 

the Addressee’s shape should be pointing, before going to the 

Addressee’s target location. 

 

N - wiggle elsewhere 

The Communicator steps out in the direction of the Addressee’s target 

orientation at a game board location other than the Addressee’s target 

location or the central location. 

 

O - circle target count 
The Communicator goes to the Addressee’s target location and circles 

around it however many times the Addressee needs to rotate. 

 

P - circle target direction 
The Communicator goes to the Addressee’s target location and circles 

around it in the direction of the Addressee’s target orientation. 

 

Q - circle board direction 

The Communicator goes to the Addressee’s target location and circles 

along the border of the entire board in the direction of the Addressee’s 

target orientation. 

 

R - circle board count 

The Communicator goes to the Addressee’s target location and circles 

along the border of the entire board however many times the 

Addressee needs to rotate. 

 

S - draw 
The Communicator uses a large section of the game board to sketch 

the Addressee’s overall target configuration. 

 

T - opposite 

The Addressee goes to the location diagonally opposite the 

Communicator’s end location on the game board, i.e. a complete 

absence of a communicative signal by the Communicator. 

 

U - 
The Communicator goes to the Addressee’s target location and rotates 

to match own orientation. 

 

V – Clicks (cheating) 
The Communicator goes to the Addressee’s target location and clicks 

with the controller however many times the Addressee need to rotate. 
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W 
The Communicator goes to the Addressee’s target location and 

rotates to indicate target location. 

 

X 

The Communicator circles from the center of the grit and circles 

around it however many times the Addressee needs to rotate. 

Clockwise is right turn, counter clockwise is left turn. 

 

Y 

The communicator first rotates in place however many times 

required for the Addressee to reach the target orientation before 

going to the target location 

 
Table S1: Communicative strategy labels and corresponding descriptions of strategy type. These signal 

classifications were used to construct the accumulation of strategy behavioral dissimilarity model matrix. 

Bolded strategy labels indicate all strategy types that were not categorized in previous studies.  
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